

SOLVING INEQUALITIES

Unit Outcomes:

After completing this unit, you should be able to:
4 know and apply methods and procedures in solving problems on inequalities involving absolute value.

* know and apply methods for solving systems of linear inequalities.
\nmid apply different techniques for solving quadratic inequalities.

Main Contents

3.1 Inequalities involving absolute value

3.2 Systems of linear inequalities in two variables
3.3 Quadratic inequalities

Key Terms
Summary
Review Exercises

INTRODUCTION

Recall that open statements of the form $a x+b>0, a x+b<0, a x+b \leq 0$ and $a x+b \geq 0$ for $a \neq 0$ are inequalities with solutions usually involving intervals.
In this unit, you will study methods of solving inequalities involving absolute values, system of linear inequalities in two variables and quadratic inequalities. You will also learn about the applications of these methods in solving practical problems involving inequalities.

3.1 INEQUALITIES INVOLVING ABSOLUTE VALUE

The methods frequently used for describing sets are the complete listing method, the partial listing method and the set-builder method. Sets of real numbers or subsets may be described by using the set-builder method or intervals (sets of real numbers between any two given real numbers).
Notation: For real numbers a and b where $a<b$,

```
\checkmark ~ ( a , b ) ~ i s ~ a n ~ o p e n ~ i n t e r v a l ;
\checkmark ~ ( a , b ] ~ a n d ~ [ a , b ) ~ a r e ~ h a l f ~ c l o s e d ~ o r ~ h a l f ~ o p e n ~ i n t e r v a l s ; ~ a n d
\checkmark \quad [ a , b ] ~ i s ~ a ~ c l o s e d ~ i n t e r v a l .
```

For example, $(5,9)$ is the set of real numbers between 5 and 9 and $[5,9]$ is the set of real numbers between 5 and 9 including 5 and 9 .

That is, $(5,9)=\{x: 5<x<9$ and $x \in \mathbb{R}\}$

$$
[5,9]=\{x: 5 \leq x \leq 9 \text { and } x \in \mathbb{R}\}
$$

In general, if a and b are fixed real numbers with $a<b$, then

$$
\begin{aligned}
& {[a, b]=\{x: a \leq x \leq b \text { and } x \in \mathbb{R}\}} \\
& (-\infty, a]=\{x: x \leq a \text { and } x \in \mathbb{R}\}
\end{aligned} \quad(a, b)=\{x: a<x<b \text { and } x \in \mathbb{R}\}
$$

Note: The symbol " ∞ " is used to mean positive infinity and " $-\infty$ " is used to mean negative infinity.

Intervals are commonly used to express the solution sets of inequalities. For instance, let us find the solution set of $2 x+4 \leq 3 x-5$.
$2 x+4 \leq 3 x-5$ is equivalent to $2 x-3 x \leq-5-4$ which is $-x \leq-9$.
Multiplying both sides by -1 gives $x \geq 9$. (Remember that, when you multiply or divide by a negative number, the inequality sign is changed).
So, the solution set is $[9, \infty)$.

ACTIVITY 3.1

1 Discuss the 3-methods of describing sets: the complete listing method, the partial listing method and the set-builder method.
2 Give examples for each of the methods used for describing a set.
3 Describe each of the following sets using any one of the methods.
a The set of numbers $-3,-2,1,0,2,3$.
b The set of all negative multiples of 2 .
c The set of natural numbers greater than 6 and less than 50 .
4 Describe each of the following sets using set-builder method:
a $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
b $\quad\{0,3,6,9, \ldots\}$
c $[-3,5)$
d $[2, \infty)$

5 Write each of the following using intervals:
a $\quad\{x: x \in \mathbb{R} \backslash\{0\}\}$
b $\quad\{x:-1 \leq x \leq 2$ and $x \in \mathbb{R}\}$
c $\quad\{x: 0.2<x \leq 0.8$ and $x \in \mathbb{R}\}$
d $\quad\{x: x \in \mathbb{R}$ and $x \neq-1\}$

6 Find all values of x satisfying the following inequalities:
a $\quad 2 x-1<7$
b $\quad 4 \leq 1-x<5$

Look at the number line given below.

What are the coordinates of points A and B , on the number line?
What is the distance of point A from the origin? What about B?
The number that shows only the distance from the point corresponding to zero (and not the direction) is called the absolute value. For example, the point C (with coordinate -2) is 2 units from the point corresponding to zero. This is denoted by $|-2|=2$.

On the number line, $|x|$ is the distance between the point corresponding to number x and the point corresponding to zero, regardless of whether the point is to the right or left of the point corresponding to zero as shown in Figure 3.6 below.

Figure 3.6

Definition 3.1

If x is a real number, then the absolute value of x, denoted by $|x|$, is defined by

$$
|x|=\left\{\begin{array}{cc}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{array}\right.
$$

Example 1

a $\quad|25|=25$ because $25>0 \quad$ b $\quad\left|-\frac{4}{5}\right|=-\left(-\frac{4}{5}\right)=\frac{4}{5}$ because $-\frac{4}{5}<0$

ACTIVITY 3.2

1 Why is it always true that for any real number $x,|x| \geq 0$?
2 Evaluate each of the following expressions:
a $|-3|$
b $\quad|0|$
c $\quad|-\sqrt{5}|$
d $\quad|-3||-2|$
e $\quad|1-\sqrt{2}|$

3 If $x=-2$ and $y=3$, then evaluate each of the following:
a $|6 x+y|$
b $\quad|6 x|+|y|$
c $\quad|2 x-3 y|$

4 Verify each of the following using examples:
a $\quad|x-y|=|y-x|$
b $\quad|2 x-3 y|=|3 y-2 x|$ c $\quad \sqrt{x^{2}}=|x|$
d $\quad|x||y|=|x y|$
e $\quad\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$

Geometrically, the equation $|x|=5$ means that the point with coordinate x is 5 units away from the point corresponding to zero, on the number line. Obviously, the number line contains two points that are 5 units from the point corresponding to zero, along one to the left and the other to the right. So, $|x|=5$ has two solutions, $x=5$ and $x=-5$.

Theorem 3.1 Solutions of the equation $|\boldsymbol{x}|=a$

For any real number a, the equation $|x|=a$ has
i two solutions $x=a$ and $x=-a$, if $a>0$;
ii one solution, $x=0$, if $a=0$; and
iii no solution, if $a<0$.
Example 2 Solve each of the following absolute value equations:
a $\quad|3 x+5|=2$
b $\quad\left|\frac{2}{3} x+1\right|=0$
c. $|2 x-1|=-3$

Solution:

a $\quad|3 x+5|=2$ is equivalent to $3 x+5=-2$ or $3 x+5=2$

$$
\Rightarrow 3 x+5-5=-2-5 \text { or } 3 x+5-5=2-5
$$

$$
\Rightarrow 3 x=-7 \text { or } 3 x=-3
$$

$$
\Rightarrow x=-\frac{7}{3} \text { or } x=-1
$$

Therefore, $x=-\frac{7}{3}$ and $x=-1$ are the two solutions.
b We know that $|x|=0$ if and only if $x=0$. Therefore, $\left|\frac{2}{3} x+1\right|=0$ is equivalent to $\frac{2}{3} x+1=0$. Hence, $\frac{2}{3} x=-1$

$$
\Rightarrow x=-\frac{3}{2} \text { is the solution. }
$$

c Since $|x| \geq 0$ for all $x \in \mathbb{R}$, the given equation $|2 x-1|=-3$ has no solution. As discussed above $|x|=4$ means $x=-4$ or $x=4$. Hence, on the number line, the point corresponding to x is 4 units away from the point corresponding to 0 . We see that in $|x| \leq 4$, the distance between the point corresponding to x and the point corresponding to 0 is less than 4 or equal to 4 . It follows that $|x| \leq 4$ is equivalent to $-4 \leq x \leq 4$.
We have the following generalization.

Theorem 3.2 Solution of $|x|<a$ and $|x| \leq a$

For any real number $a>0$,
i the solution of the inequality $|x|<a$ is $-a<x<a$.
ii the solution of the inequality $|x| \leq a$ is $-a \leq x \leq a$.

Example 3 Solve each of the following absolute value inequalities:
a $|2 x-5|<3$
b $\quad|3-5 x| \leq 1$

Solution:

a $|2 x-5|<3$ is equivalent to $-3<2 x-5<3$,
$\Rightarrow-3<2 x-5$ and $2 x-5<3$
$\Rightarrow-3+5<2 x-5+5$ and $2 x-5+5<3+5$
$\Rightarrow 2<2 x$ and $2 x<8$
$\Rightarrow 1<x$ and $x<4$ that is, $1<x<4$
Therefore, the solution set is $\{x: 1<x<4\}=(1,4)$
We can represent the solution set on the number line as follows:

b $\quad|3-5 x| \leq 1$ is equivalent to $-1 \leq 3-5 x \leq 1$
$\Rightarrow-1 \leq 3-5 x$ and $3-5 x \leq 1$
$\Rightarrow-1-3 \leq 3-3-5 x$ and $3-3-5 x \leq 1-3$
$\Rightarrow-4 \leq-5 x$ and $-5 x \leq-2$
$\Rightarrow 5 x \leq 4$ and $2 \leq 5 x$
$\Rightarrow x \leq \frac{4}{5}$ and $x \geq \frac{2}{5}$ that is, $\frac{2}{5} \leq x \leq \frac{4}{5}$
Therefore, the solution set is $\left\{x: \frac{2}{5} \leq x \leq \frac{4}{5}\right\}=\left[\frac{2}{5}, \frac{4}{5}\right]$

Note:

In $|x|<a$, if $a<0$ the inequality $|x|<a$ has no solution.

Theorem 3.3 Solution of $|x|>a$ and $|x| \geq a$

For any real number a, if $a>0$, then
i the solution of the inequality $|x|>a$ is $x<-a$ or $x>a$.
ii the solution of the inequality $|x| \geq a$ is $x \leq-a$ or $x \geq a$.

Example 4 Solve each of the following inequalities:
a $|5+2 x|>6$
b $\quad\left|\frac{3}{5}-2 x\right| \geq 1$
c $\quad|3-x|>-2$

Solution: According to Theorem 3.3,
a $\quad|5+2 x|>6$ implies $5+2 x<-6$ or $5+2 x>6$

$$
\Rightarrow 5-5+2 x<-6-5 \text { or } 5-5+2 x>6-5
$$

$$
\Rightarrow 2 x<-11 \text { or } 2 x>1
$$

$$
\Rightarrow x<\frac{-11}{2} \text { or } x>\frac{1}{2}
$$

Therefore, the solution set is $\left\{x: x<-\frac{11}{2}\right.$ or $\left.x>\frac{1}{2}\right\}$.
(Try to represent this solution on the number line)
b

$$
\left|\frac{3}{5}-2 x\right| \geq 1 \text { implies } \frac{3}{5}-2 x \leq-1 \text { or } \frac{3}{5}-2 x \geq 1
$$

Hence, $\frac{3}{5}-2 x \leq-1$ or $\frac{3}{5}-2 x \geq 1$ gives $\frac{3}{5}-\frac{3}{5}-2 x \leq-1-\frac{3}{5}$ or $\frac{3}{5}-\frac{3}{5}-2 x \geq 1-\frac{3}{5}$

$$
\begin{aligned}
& \Rightarrow \quad-2 x \leq \frac{-8}{5} \text { or }-2 x \geq \frac{2}{5} \\
& \Rightarrow \quad \frac{8}{5} \leq 2 x \text { or }-\frac{2}{5} \geq 2 x \\
& \Rightarrow x \geq \frac{4}{5} \text { or } x \leq-\frac{1}{5}
\end{aligned}
$$

Therefore, the solution set is $\left\{x: x \leq-\frac{1}{5}\right.$ or $\left.x \geq \frac{4}{5}\right\}$.
c By definition, $|3-x|=|x-3| \geq 0$. So, $|3-x|>-2$ is true for all real numbers x.
Therefore, the solution set is \mathbb{R}.

Group Work 3.1

1 Given that $a<0<b$, express the following without absolute value.

a $\quad|a-b|$
b $|a b-a|$
c $\quad\left|\frac{b}{a}\right|$

2 For any real number a, show that
a $\quad a \leq|a|$
Hint: If $a \geq 0$, then $|a|=a$. So, $a \leq|a|$.
If $a<0$, then $|a|>0$. Compare a and $|a|$
b $\quad-|a| \leq a \leq|a|$

3 For any real numbers x and y, show that

$$
\text { a } \quad|x+y| \leq|x|+|y|
$$

Hint: Start from $|x+y|^{2}=(x+y)^{2}$ and expand. Then use 2 b above.
b $\quad|x-y| \geq|x|-|y|$
4 Solve each of the following
a $\frac{3 x-1}{2}+x \leq 7+\frac{1}{2} x$
b $\quad|-2| \geq 8-|4 x+6|$
c $\quad\left|\frac{1}{4} x-2\right|>1$
d $\quad|2 x-1|<x+3$

Exercise 3.1

1 Simplify and write each of the following using intervals:
a $\quad\{x: x \in \mathbb{R}$ and $x \neq-2\}$
b $\quad\{x:-1 \leq x-2 \leq 2\}$
c $\quad\{x: x+3>2\}$
d $\quad\{x: 5 x-9 \leq 9\}$
e $\quad\{x: 2 x+3 \geq-5 x\}$
f $\quad\{x: 2 x-1<x<3\}$

2 Solve each of the following inequalities:
a $\quad 2 x-5 \geq 3 x$
b $\quad 3 x+1<\frac{8 x-3}{2}$
c $\quad \frac{1}{4} t+2>3(5-t)$

3 A number y is 15 larger than a positive number x. If their sum is not more than 85 , what are the possible values of such number y ?
4 If $x=-\frac{2}{3}$ and $y=\frac{1}{5}$, then evaluate the following:
a $\quad|6 x|+|5 y|$
b $\quad|3 x|-|10 y|$ c $\quad \mid 3 x-10 y$
d $\quad\left|\frac{3 x-2 y}{x+y}\right|$

5 Solve each of the following absolute value equations:
a $\quad|3 x+6|=7$
b $\quad|5 x-3|=9$
c $\quad|x-6|=-6$
d $|7-2 x|=0$
e $\quad|6-3 x|+5=14$
f $\quad\left|\frac{3}{4} x+\frac{1}{8}\right|=\frac{1}{2}$

6 Solve each of the following absolute value inequalities and express their solution sets in intervals:
a $\quad|3-5 x| \leq 1$
b $\quad|5 x|-2<8$
c $\quad\left|\frac{2}{3} x-\frac{1}{9}\right| \geq \frac{1}{3}$
d $|6-2 x|+3>8$
e $\quad|3 x+5| \leq 0 \quad$ f $\quad|x-1|>-2$

7 For any real numbers a, b and c such that $a \neq 0$ and $c>0$, solve each of the following inequalities:
a $\quad|a x+b|<c$
b $\quad|a x+b| \leq c$
c $\quad|a x+b|>c$
d $|a x+b| \geq c$

3.2 SYSTEMS OF LINEAR INEQUALITIES IN TWO VARIABLES

Recall that a first degree (linear) equation in two variables has the form

$$
a x+b y=c
$$

where a and b both are not 0 .
When two or more linear equations involve the same variables, they are called a system of linear equations. An ordered pair that satisfies all the linear equations of a system is called a solution of the system. For instance

$$
\left\{\begin{array}{l}
2 x-y=7 \\
x+5 y=-2
\end{array}\right.
$$

is a system of two linear equations. What is its solution?

ACTIVITY 3.3

1 What can you say about the solution set of two linear equations if their graphs do not intersect?

2 Find the solutions of each of the following systems of equations, graphically:
a $\left\{\begin{array}{l}x-y=-2 \\ x+y=6\end{array}\right.$
b $\left\{\begin{aligned} x+y & =2 \\ 2 x+2 y & =8\end{aligned}\right.$
c $\quad\left\{\begin{aligned} x+2 y & =4 \\ 2 x+4 y & =8\end{aligned}\right.$

3 Find three different ordered pairs which belong to R where

$$
\mathrm{R}=\{(x, y): y \leq x+1\} .
$$

4 Draw the graph of R given in Question 3 above.
5 Draw the graphs of each of the following relations:
a $\quad \mathrm{R}=\{(x, y): x \geq y$ and $y>x-1\} \quad$ b $\quad \mathrm{R}=\{(x, y): y \leq x+1$ and $y>1-x\}$.
6 Solve each of the following systems of inequalities and write your answer in interval notation:

$$
\text { a }\left\{\begin{array} { l }
{ x \geq - 1 } \\
{ x \leq 3 } \\
{ y \geq 0 }
\end{array} \quad \text { b } \quad \left\{\begin{array}{r}
x-y<3 \\
x \geq 2
\end{array}\right.\right.
$$

A system of two linear equations in two variables often involves a pair of straight lines in the plane. The solution set of such a system of equations can be determined from the graph and is the set of all ordered pairs of coordinates of points which lie on both lines.
Example 1 Find the solution set of the system of equations $\left\{\begin{array}{l}x-y=3 \\ x+2 y=0\end{array}\right.$.

Solution: First draw the graphs of $x-y=3$ and $x+2 y=0$ as shown below.

Figure 3.7
The two lines intersect at $(2,-1)$.
Therefore, the solution set of the system is $\{(2,-1)\}$.
In a system of equations, if " $=$ " is replaced by "<", ">", " \leq " or " \geq ", the system becomes a system of linear inequalities.
Example 2 Find the solution of the following system of inequalities graphically:

$$
\left\{\begin{array}{l}
y \geq-3 x+2 \\
y<x-2
\end{array}\right.
$$

Solution: First draw the graph of one of the boundary lines, $y=-3 x+2$, corresponding to the first inequality.

The graph of $y \geq-3 x+2$ consists of points on or above the line $y=-3 x+2$ as shown in Figure 3.8a. This is obtained by taking a test point say (2,0), and checking that $0 \geq-3(2)+2=-4$ is true. Next, draw the graph of the other boundary line, $y=x-2$, corresponding to the second inequality. The graph of $y<x-2$ consists of points below the line $y=x-2$. Points on the line are excluded as shown in Figure 3:86.

b

These graphs have been drawn using different coordinate systems in order to see them separately. Now, draw them using the same coordinate system. The part of the coordinate system marked with both types of shading is the solution set for the system as shown in Figure 3.9b.

a

Figure 3.9
The solution set of $\left\{\begin{array}{l}y \geq-3 x+2 \\ y<x-2\end{array}\right.$ is shown by the cross-shaded region in the diagram.
Solving $\left\{\begin{array}{l}y=-3 x+2 \\ y=x-2\end{array}\right.$, we get $-3 x+2=x-2$
Therefore, $x=1$ and $y=-1$
So, $x>1,-3 x+2 \leq y<x-2$
Hence, the solution set of the system is expressed as

$$
\{(x, y):-3 x+2 \leq y<x-2 \text { and } 1<x<\infty\}
$$

Example 3 Find the solution of each of the following systems of linear inequalities, graphically:
a $\left\{\begin{array}{l}x+y<3 \\ x \geq 0 \\ y \geq 0\end{array}\right.$
b $\left\{\begin{array}{l}y+x>0 \\ y-x \leq 1 \\ x \leq 2\end{array}\right.$

Solution:

a Here, our objective is to determine the set of points whose coordinates (x, y) satisfy all three of these conditions. To do so, let us draw each boundary line as shown below. The points satisfying the conditions $x>0$ are those lying to the right of the y-axis as shown in Figure 3.10a.

a

b

C

Figure 3.10
The points (x, y) with $y>0$ are the points that lie above the x-axis as shown in Figure 3.10b. The points (x, y) with $x+y<3$ is the set of points lying below the line $x+y=3$. Points on the line are excluded.

Now, draw the graph of the three inequalities $x \geq 0, y \geq 0$ and $x+y<3$, using the same coordinate system, taking only the intersection of the three regions.

The points satisfying the system of inequalities are the points that satisfy all the three inequalities. The corresponding region is the triangular region shaded in Figure 3.11. That is, the set of (x, y) such that $x \in[0,3)$ and $y \in[0,3-x)$
b First, draw the graph of the boundary line $x+y=0$ (or $y=-x$) for the first inequality. The graph of $x+y>0$ consists of points above the line.
Points on the line are excluded as shown in Figure 3.12a.

b

C

Figure 3.12

Next, draw the graph of the boundary line $y-x=1$ for the second inequality. The graph of $y-x \leq 1$ consists of points on and below the line $y-x=1$ as shown in Figure 3.12b.
Finally, draw the graph of the boundary line $x=2$ for the third inequality. The points (x, y) satisfying the condition $x \leq 2$ are those lying on and to the left of the line $x=2$ as shown in Figure 3.12c.
Now, draw the graph of the three inequalities using the same coordinate system as shown in Figure 3.13a.

a

b

Figure 3.13
Because there are infinite solutions to the system, the elements cannot be listed. But the graph is easy to describe. The solution is the triangular region with vertices $\left(-\frac{1}{2}, \frac{1}{2}\right),(2,3)$ and $(2,-2)$, except those points on the line $y+x=0$, as shown in Figure 3.13b.

ACTIVITY 3.4

1 By observing the graph of the inequality given in Figure 3.13b, name at least 10 ordered pairs that satisfy the inequality.
2 If $\mathrm{R}=\{(x, y): y+x>0, y-x \leq 1$ and $x \leq 2\}$, what is the domain and range of R ?
We shall now consider an example involving an application of a system of linear inequalities.
Example 4 A furniture company makes tables and chairs. To produce a table it requires 2 hrs on machine A , and 4 hrs on machine B . To produce a chair it requires 3 hrs on machine A and 2 hrs on machine B. Machine A can operate at most 12 hrs a day and machine B can operate at most 16 hrs a day. If the company makes a profit of Birr 12 on a table and Birr 10 on a chair, how many of each should be produced to maximize its profit?

Solution: Let x be the number of tables to be produced and y be the number of chairs to be produced.

Then, if a table is produced in 2 hrs on machine A, x tables require $2 x \mathrm{hrs}$. Similarly, y chairs require $3 y$ hrs on machine A. On machine B, x tables require $4 x$ hrs and y chairs require $2 y$ hrs. Since machines A and B can operate at most 12 hrs and 16 hrs, respectively, you have the following system of linear inequalities.

From machine A: $2 x+3 y \leq 12$
From machine B: $4 x+2 y \leq 16$
Also, $x \geq 0$ and $y \geq 0$ since x and y are numbers of tables and chairs.
Hence, you obtain a system of linear inequalities given as follows:

$$
\left\{\begin{array}{l}
2 x+3 y \leq 12 \\
4 x+2 y \leq 16 \\
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

Since the inequalities involved in the system are all linear, the boundaries of the graph of the system are straight lines. The region containing the solution to the system is the quadrilateral shown below.

Figure 3.14
The profit made is Birr 12 on a table, so Birr $12 x$ on x tables and Birr 10 on a chair, so Birr $10 y$ on y chairs. The profit function P is given by $\mathrm{P}=12 x+10 y$.
The values of x and y which maximize or minimize the profit function on such a system are usually found at vertices of the solution region.

Hence, from the graph, you have the coordinates of each vertex as shown in Figure 3.14.

The profit: $\mathrm{P}=12 x+10 y$ at each vertex is found to be:

$$
\begin{aligned}
& \text { At }(0,0), \mathrm{P}=12(0)+10(0)=0 \\
& \operatorname{At}(0,4), \mathrm{P}=12(0)+10(4)=40 \\
& \operatorname{At}(3,2), \mathrm{P}=12(3)+10(2)=56 \\
& \operatorname{At}(4,0), \mathrm{P}=12(4)+10(0)=48
\end{aligned}
$$

Therefore, the profit is maximum at the vertex $(3,2)$, so the company should produce 3 tables and 2 chairs per day to get the maximum profit of Birr 56 .

Group Work 3.2

1 Find the solutions of each of the following systems of linear inequalities graphically:

a $\left\{\begin{array}{l}y+x \geq 0 \\ y-x \geq 0 \\ y \leq 3\end{array}\right.$
b $\left\{\begin{array}{l}x+y<1 \\ 2 x-y>-1 \\ y-3 x \geq-3\end{array}\right.$

2 Let $\mathrm{R}=\{(x, y): y \geq x, y \geq-x$ and $y \leq 3\}$ and

$$
r=\{(x, y): x+y<1,2 x-y>-1 \text { and } y-3 x \geq-3\}
$$

Using Question 1 above, find the domain and range of the relations R and r.

Exercise 3.2

1 Draw the graphs of each of the following relations:
a $\quad \mathrm{R}=\{(x, y): x-y \geq 1$ and $2 x+y<3\}$
b $\quad \mathrm{R}=\{(x, y): x \leq y-1$ and $y-2 x>2\}$
c $\quad \mathrm{R}=\{(x, y): x>y ; x>0$ and $y-x<1\}$
d $\quad \mathrm{R}=\{(x, y): x+y \geq 0 ; y \geq 0$ and $x+y<1\}$
2 Solve each of the following system of linear inequalities graphically:
a $\left\{\begin{array}{l}y \leq 2 x+3 \\ y-x \geq 0 \\ y>0\end{array} \quad\right.$ b $\left\{\begin{array}{l}3 x+y<5 \\ x>0 \\ x+y<6\end{array}\right.$
c $\left\{\begin{array}{l}y \leq 1-x \\ y>x+2 \\ y>0\end{array}\right.$
d $\left\{\begin{array}{l}x \geq-1 \\ y \leq 2 \\ y \geq x-1\end{array}\right.$
e $\left\{\begin{array}{l}0 \leq x \leq 1 \\ 0 \leq y \leq 1\end{array}\right.$
f $\left\{\begin{array}{l}x>0 \\ y>0 \\ x+y<4\end{array}\right.$

3 Describe each of the following shaded regions with a system of linear inequalities:

Figure 3.15
4 Give a pair of linear inequalities that describes the set of all points in the first quadrant.
5 Give a system of linear inequalities whose solution set is all the points inside a rectangle.
6 Suppose the sum of two positive numbers x and y is less than 10 and greater than 5 . Show all possible values for x and y graphically.
7 Suppose a shoe factory produces both low-grade and high-grade shoes. The factory produces at least twice as many low-grade as high-grade shoes. The maximum possible production is 500 pairs of shoes. A dealer calls for delivery of at least 100 high-grade pairs of shoes per day. Suppose the operation makes a profit of Birr 2.00 per a pair of shoes on high-grade shoes and Birr 1.00 per pairs of shoes on low-grade shoes. How many pairs of shoes of each type should be produced for maximum profit?
Hint: Let x denote the number of high-grade shoes. Let y denote the number of low-grade shoes.

3.3 QUADRATIC INEQUALITIES

In Unit 2 of Grade 9 mathematics, you have learnt how to solve quadratic equations.
(Recall that equations of the form $a x^{2}+b x+c=0, a \neq 0$ are quadratic equations.)
Can similar methods be used to solve quadratic inequalities?

Definition 3.2

An inequality that can be reduced to any one of the following forms:

$$
\begin{aligned}
& a x^{2}+b x+c \leq 0 \text { or } a x^{2}+b x+c<0 \\
& a x^{2}+b x+c \geq 0 \text { or } a x^{2}+b x+c>0
\end{aligned}
$$

where a, b and c are constants and $a \neq 0$, is called a quadratic inequality.
For example $x^{2}-3 x+2<0, x^{2}+1 \geq 0, x^{2}+x \leq 0$ and $x^{2}-4>0$ are all quadratic inequalities.
The following activity will help you to recall what you have learned about quadratic equations in Grade 9.

ACTIVITY 3.5

1 Which of the following are quadratic equations?
a $\quad x-2=x^{2}+2 x$
b
$x^{2}-2 x=x^{2}+3 x+6$
c $\quad 2(x-4)-(x-2)=(x+2)(x-4)$
d $x^{3}-3=1+4 x+x^{2}$
e $\quad(x-1)(x+2) \geq 0$
$\mathrm{f} \quad x(x-1)(x+1)=0$.

2 Which of the following are quadratic inequalities?
a $\quad 2 x^{2} \leq 5 x+x^{2}-3$
b $\quad 2 x^{2}>2 x+x^{2}+8$
c $\quad x(1-x) \leq(x+2)(1-x)$
d $\quad 3 x^{2}+5 x+6>0$
e $5-2\left(x^{2}+x\right)<6 x-2 x^{2}$
f $(x-2)(x+1) \geq 2-2 x$
g $\quad-1>\left(x^{2}+1\right)(x+2)$.

3 If the product of two real numbers is zero, then what can you say about the two numbers?
4 Factorize each of the following if possible:
a $x^{2}+6 x$
b $35 x-28 x^{2}$
c $\frac{1}{16}-25 x^{2}$
d $\quad 4 x^{2}+7 x+3$
e $\quad x^{2}-x+3$
$f \quad x^{2}+2 x-3$
g $3 x^{2}-11 x-4$
h $\quad x^{2}+4 x+4$.

5 Given a quadratic equation $a x^{2}+b x+c=0$,
a what is its discriminant?
b state what must be true about the discriminant so that the equation has one real root, two distinct real roots, and no real root.

3.3.1 Solving Quadratic Inequalities Using Product Properties

Suppose you want to solve the quadratic inequality

$$
(x-2)(x+3)>0 .
$$

Check that $x=3$ makes the statement true while $x=1$ makes it false. How do you find the solution set of the given inequality? Observe that the left hand side of the inequality is the product of $x-2$ and $x+3$. The product of two real numbers is positive, if and only if either both are positive or both are negative. This fact can be used to solve the given inequality.

Product properties:

$1 m . n>0$, if and only if
i $\quad m>0$ and $n>0$ or \quad ii $\quad m<0$ and $n<0$.
$2 m . n<0$, if and only if
i $\quad m>0$ and $n<0$ or \quad ii $\quad m<0$ and $n>0$.
Example 1 Solve each of the following inequalities:
a $\quad(x+1)(x-3)>0$
b $\quad 3 x^{2}-2 x \geq 0$
c $\quad-2 x^{2}+9 x+5<0$
d $\quad x^{2}-x-2 \leq 0$

Solution:

a By Product property $1,(x+1)(x-3)$ is positive if either both the factors are positive or both are negative.
Now, consider case by case as follows:
Case ii When both the factors are positive

$$
\begin{aligned}
& x+1>0 \text { and } x-3>0 \\
& x>-1 \text { and } x>3
\end{aligned}
$$

The intersection of $x>-1$ and $x>3$ is $x>3$. This can be illustrated on the number line as shown in Figure 3.16 below.

Figure 3.16
The solution set for this first case is $\mathrm{S}_{1}=\{x: x>3\}=(3, \infty)$.

Case ii When both the factors are negative

$$
\begin{aligned}
& x+1<0 \text { and } x-3<0 \\
& x<-1 \text { and } x<3
\end{aligned}
$$

The intersection of $x<-1$ and $x<3$ is $x<-1$.
This can be illustrated on the number line as shown below in Figure 3.17.

Figure 3.17
The solution set for this second case is $\mathrm{S}_{2}=\{x: x<-1\}=(-\infty,-1)$.
Therefore, the solution set of $(x+1)(x-3)>0$ is:

$$
\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\{x: x<-1 \text { or } x>3\}=(-\infty,-1) \cup(3, \infty)
$$

b First, factorize $3 x^{2}-2 x$ as $x(3 x-2)$
So, $3 x^{2}-2 x \geq 0$ means $x(3 x-2) \geq 0$ equivalently.
i $\quad x \geq 0$ and $3 x-2 \geq 0$ or
ii $\quad x \leq 0$ and $3 x-2 \leq 0$
Case i When $x \geq 0$ and $3 x-2 \geq 0$

$$
x \geq 0 \text { and } x \geq \frac{2}{3}
$$

The intersection of $x \geq 0$ and $x \geq \frac{2}{3}$ is $x \geq \frac{2}{3}$. Graphically,

So, $S_{1}=\left\{x: x \geq \frac{2}{3}\right\}=\left[\frac{2}{3}, \infty\right)$
Case ii When $x \leq 0$ and $3 x-2 \leq 0$ that is $x \leq 0$ and $x \leq \frac{2}{3}$
The intersection of $x \leq 0$ and $x \leq \frac{2}{3}$ is $x \leq 0$. Graphically,

Figure 3.19

So, $S_{2}=\{x: x \leq 0\}=(-\infty, 0]$
Therefore, the solution set for $3 x^{2}-2 x \geq 0$ is

$$
\begin{aligned}
& \mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{x: x \leq 0 \text { or } x \geq \frac{2}{3}\right\}=(-\infty, 0] \cup\left[\frac{2}{3}, \infty\right) \\
& \text { c } \quad-2 x^{2}+9 x+5=(-2 x-1)(x-5)<0
\end{aligned}
$$

By Product property 2, $(-2 x-1)(x-5)$ is negative if one of the factors is negative and the other is positive.

As before, consider case by case as follows:
Case i When $-2 x-1>0$ and $x-5<0$

$$
x<-\frac{1}{2} \text { and } x<5
$$

The intersection of $x<-\frac{1}{2}$ and $x<5$ is $x<-\frac{1}{2}$. Graphically,

So, $S_{1}=\left\{x: x<-\frac{1}{2}\right\}=\left(-\infty,-\frac{1}{2}\right)$
Case ii When $-2 x-1<0$ and $x-5>0$

$$
x>-\frac{1}{2} \text { and } x>5
$$

The intersection of $x>5$ and $x>-\frac{1}{2}$ is $x>5$. Graphically,

Figure 3.21
So, $S_{2}=\{x: x>5\}=(5, \infty)$
Therefore, the solution set for $(-2 x-1)(x-5)<0$ is

$$
S_{1} \cup S_{2}=\left\{x: x<-\frac{1}{2} \text { or } x>5\right\}=\left(-\infty,-\frac{1}{2}\right) \cup(5, \infty)
$$

d $\quad x^{2}-x-2=(x+1)(x-2)$
So, $x^{2}-x-2 \leq 0$ means $(x+1)(x-2) \leq 0$
By Product property $2,(x+1)(x-2)$ is negative if one of the factors is negative and the other is positive. To solve $(x+1)(x-2) \leq 0$, consider case by case as follows:
Case il $\quad x+1 \geq 0$ and $x-2 \leq 0$
$x \geq-1$ and $x \leq 2$
The intersection of $x \geq-1$ and $x \leq 2$ is $-1 \leq x \leq 2$. Graphically,

Figure 3.22
So, $\mathrm{S}_{1}=\{x:-1 \leq x \leq 2\}=[-1,2]$
Case ii $x+1 \leq 0$ and $x-2 \geq 0$
$x \leq-1$ and $x \geq 2$
There is no intersection of $x \leq-1$ and $x \geq 2$. Graphically,

Figure 3.23
So, $S_{2}=\varnothing$
Therefore, the solution set for $x^{2}-x-2 \leq 0$ is

$$
S_{1} \cup S_{2}=\{x:-1 \leq x \leq 2\} \cup \varnothing=\{x:-1 \leq x \leq 2\}=[-1,2]
$$

Exercise 3.3

1 Solve each of the following inequalities using product properties:
a $\quad x(x+5)>0$
b $\quad(x-1)^{2} \leq 0$
c $(4+x)(x-4)>0$
d $(5 x-3)(x+7)<0$
e $\quad(1+x)(3-2 x) \geq 0$
f $\quad(5-x)\left(1-\frac{1}{3} x\right) \leq 0$

2 Factorize and solve each of the following inequalities using product properties:
a $\quad x^{2}+5 x+4<0$
b $\quad x^{2}-4>0$
c $\quad x^{2}+5 x+6 \geq 0$
d $\quad x^{2}-2 x+1 \leq 0$
e $\quad 3 x^{2}+4 x+1 \geq 0$
f $\quad 2 x^{2}-7 x+3<0$
g $\quad 25 x^{2}-\frac{1}{16}<0$
h $\quad x^{2}+4 x+4>0$.

3 a Find the solution set of the inequality $x^{2}<25$.
b Why is $\{x: x<5\}$ not the solution set of $x^{2}<25$?
4 If $x<y$, does it follow that $x^{2}<y^{2}$?
5 If a ball is thrown upward from ground level with an initial velocity of $24 \mathrm{~m} / \mathrm{s}$, its height h in metres after t seconds is given by $h(t)=24 \mathrm{t}-16 t^{2}$. When will the ball be at a height of more than 8 metres?

3.3.2 Solving Quadratic Inequalities Using the Sign Chart Method

Suppose you need to solve the quadratic inequality

$$
x^{2}+3 x-4<0
$$

Consider how the sign of $x^{2}+3 x-4$ changes as you vary the values of the unknown. As x is moved along the number line, the quantity $x^{2}+3 x-4$ is sometimes positive, sometimes zero, and sometimes negative. To solve the inequality, you must find the values of x for which $x^{2}+3 x-4$ is negative. Intervals where $x^{2}+3 x-4$ is positive are separated from intervals where it is negative by values of x for which it is zero. To locate these values, solve the equation $x^{2}+3 x-4=0$.
Factorize $x^{2}+3 x-4$ and find the two roots (-4 and 1). Divide the number line into three open intervals. The expression $x^{2}+3 x-4$ will have the same sign in each of these intervals $(-\infty,-4),(-4,1)$ and $(1, \infty)$.
The "sign chart" method allows you to find the sign of $x^{2}+3 x-4$ in each interval.
Step 1 Factorize $x^{2}+3 x-4=(x+4)(x-1)$
Step 2 Draw a sign chart, noting the sign of each factor and hence the whole expression as shown below.

Figure 3.24
Step 3 Read the solution from the last line of the sign chart

$$
x^{2}+3 x-4<0 \text { for } x \in(-4,1)
$$

Therefore, the solution set is the interval $(-4,1)$

Example 2 Solve each of the following inequalities using the sign chart method:
a $\quad 6+x-x^{2} \leq 0$
b $\quad 2 x^{2}+3 x-2 \geq 0$.

Solution:

a Factorize $6+x-x^{2}$ so that $6+x-x^{2}=(x+2)(3-x) \leq 0$.
We may identify the sign of $x+2$ and $3-x$ as follows.
$x+2<0$ for each $x<-2, x+2=0$ at $x=-2$ and $x+2>0$ for each $x>-2$.
Similarly, $3-x<0$ for each $x>3,3-x=0$ at $x=3$ and $3-x>0$ for each $x<3$.
Therefore, the above results are shown in the sign chart given below in Figure 3.25 .

Figure 3.25
From the sign chart, you can immediately read the following
i The solution set of $(3-x)(x+2)<0$ is $\{x: x<-2$ or $x>3\}=(-\infty,-2) \cup(3, \infty)$.
ii The solution set of $(3-x)(x+2)>0$ is $\{x:-2<x<3\}=(-2,3)$.
iii The solution set of $(3-x)(x+2)=0$ is $\{-2,3\}$.
iv The solution set of $(3-x)(x+2) \leq 0$ is $(-\infty,-2] \cup[3, \infty)$
Therefore, the solution set of $6+x-x^{2} \leq 0$ is $(-\infty,-2] \cup[3, \infty)$.
b $\quad 2 x^{2}+3 x-2=(2 x-1)(x+2) \geq 0$.

$$
2 x-1<0 \text { for each } x<\frac{1}{2}, 2 x-1=0 \text { at } x=\frac{1}{2} \text {, and } 2 x-1>0 \text { for each } x>\frac{1}{2} \text {. }
$$

Similarly, $x+2<0$ for each $x<-2, x+2=0$ at $x=-2$ and $x+2>0$ for each $x>-2$.
The above results are shown in the sign chart given below:

From the sign chart, you can conclude that

$$
\begin{aligned}
& (2 x-1)(x+2) \geq 0 \text { for each } x \in(-\infty,-2] \cup\left[\frac{1}{2}, \infty\right) \text { and } \\
& (2 x-1)(x+2)<0 \text { for each } x \in\left(-2, \frac{1}{2}\right)
\end{aligned}
$$

Therefore, the solution set of $2 x^{2}+3 x-2 \geq 0$ is $(-\infty,-2] \cup\left[\frac{1}{2}, \infty\right)$
Example 3 For what value(s) of k does the quadratic equation $k x^{2}-2 x+k=0$ has
i only one real root? ii two distinct real roots?
iii no real roots?
Solution: The quadratic equation $k x^{2}-2 x+k=0$ is equivalent to the quadratic equation $a x^{2}+b x+c=0$ with $a=k, b=-2$ and $c=k$
The given quadratic equation has
i one real root when $b^{2}-4 a c=0$

$$
\text { So, }(-2)^{2}-4(k)(k)=0
$$

$$
4-4 k^{2}=0 \text { equivalently }(2-2 k)(2+2 k)=0
$$

$$
2-2 k=0 \text { or } 2+2 k=0
$$

$$
k=1 \text { or } k=-1
$$

Therefore, $k x^{2}-2 x+k=0$ has only one real root if either $k=1$ or $k=-1$.
ii two distinct real roots when $b^{2}-4 a c>0$
It follows that, $4-4 k^{2}>0$

$$
(2-2 k)(2+2 k)>0 \Rightarrow 4(1-k)(1+k)>0
$$

Now, use the sign chart shown below:

Figure 3.27
Therefore, for each $k \in(-1,1)$, the given quadratic equation has two distinct real roots.
iii $k x^{2}-2 x+k=0$ has no real root for each $k \in(-\infty,-1) \cup(1, \infty)$ where $b^{2}-4 a c<0$

What do you do if $a x^{2}+b x+c, a \neq 0$ is not factorizable into linear factors?
That is, there are no real numbers x_{1} and x_{2} such that $a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)$.
In this case, either $a x^{2}+b x+c>0$ for all values of x or $a x^{2}+b x+c<0$ for all values of x.
As a result, the solution set of $a x^{2}+b x+c>0$ or $a x^{2}+b x+c \geq 0$ is either $(-\infty, \infty)$ or $\}$.
Take a test point and substitute, in order to decide which is the case.
Example 4 Solve each of the following quadratic inequalities:
a $\quad x^{2}-2 x+5 \geq 0$
b $\quad-3 x^{2}+x-1 \geq 0$.

Solution:

a For $x^{2}-2 x+5 \geq 0$

$$
a=1, b=-2, c=5 \text { and } b^{2}-4 a c=(-2)^{2}-4(1)(5)=-16<0 .
$$

Hence, $x^{2}-2 x+5$ cannot be factorized.
Take a test point, say $x=0$. Then, $0^{2}-2(0)+5=5>0$
So, $x^{2}-2 x+5>0$ for all $x \in(-\infty, \infty)$
Therefore, the solution set $\mathrm{S}=(-\infty, \infty)$
b For $-3 x^{2}+x-1 \geq 0$

$$
b^{2}-4 a c=(1)^{2}-4(-3)(-1)=1-12=-11<0
$$

Hence, $-3 x^{2}+x-1$ cannot be factorized. Take a test point, say $x=0$.

$$
-3(0)^{2}+0-1=-1<0 . \text { Hence, }-3 x^{2}+x-1 \geq 0 \text { is false. }
$$

Therefore, $\mathrm{S}=\{$ \}

Group Work 3.3

1 Solve each of the following inequalities using
i product properties ii sign charts:

a $\quad x^{2}-\frac{2}{3} x<0$
b $\quad 2 x^{2}+5 x>3$
c $\quad(x-1)^{2} \geq 2 x^{2}-2 x$
d $\quad(2 x-1)(x+1) \leq x(x-3)+4$

2 What must be the value (s) of k so that $(3 k-4) x^{2}+2 k x-1=0$ has
i two distinct real roots? ii one real root? iii no real roots?
3 A manufacturer determines that the profit obtained from selling x units of a certain item in Birr is $\mathrm{P}(x)=10 x-0.002 x^{2}$
a How many units must be produced to secure profit?
b In the process of production, at how many units level will there be no profit and no loss?

Exercise 3.4

1 Solve each of the following quadratic inequalities using sign charts:
a $\quad x(x+5)>0$
b $\quad(x-3)^{2} \geq 0$
C $(4+x)(4-x)<0$
d $\left(1+\frac{x}{3}\right)(5-x)<0$
e $\quad 3-x-2 x^{2}>0$
f $\quad-6 x^{2}+2 \leq x$
g $2 x^{2} \geq-3-5 x$
h $\quad 4 x^{2}-x-8<3 x^{2}-4 x+2$
i $\quad-x^{2}+3 x<4$.

2 Solve each of the following quadratic inequalities using either product properties or sign charts:
a $\quad x^{2}+x-12>0$
b $\quad x^{2}-6 x+9>0$
c $\quad x^{2}-3 x-4 \leq 0$
d $\quad 5 x-x^{2}<6$
e $\quad x^{2}+2 x<-1$
f $\quad x-1 \leq x^{2}+2$

3 For what value(s) of k does each of the following quadratic equations have
i one real root? ii two distinct real roots? iii no real root?

$$
\begin{array}{ll}
\text { a } & (k+2) x^{2}-(k+2) x-1=0 \\
\text { b } & x^{2}+(5-k) x+9=0
\end{array}
$$

4 For what value (s) of k is
a $\quad k x^{2}+6 x+1>0$ for each real number x ?
b $\quad x^{2}-9 x+k<0$ only for $x \in(-2,11)$?
5 A rocket is fired straight upward from ground level with an initial velocity of $480 \mathrm{~km} / \mathrm{hr}$. After t seconds, its distance above the ground level is given by $480 t-16 t^{2}$.
For what time interval is the rocket more than 3200 km above ground level?
6 A farmer has 8 m by 10 m plot of land. He needs to construct a water reservoir at one corner of the plot with equal length and width as shown below.

For what values of x is the area of the remaining part less than the area needed for the reservoir?

3.3.3 Solving Quadratic Inequalities Graphically

In order to use graphs to solve quadratic inequalities, it is necessary to understand the nature of quadratic functions and their graphs.
i If $a>0$, then the graph of the quadratic function

$$
f(x)=a x^{2}+b x+c \text { is an upward parabola. }
$$

ii If $a<0$, then the graph of the quadratic function

$$
f(x)=a x^{2}+b x+c \text { is a downward parabola. }
$$

ACTIVITY 3.6

1 For a quadratic function $f(x)=a x^{2}+b x+c$, find the point at which the graph turns upward or downward. What do you call this turning point?
2 Sketch the graph and find the turning point of:
a $\quad f(x)=x^{2}-1$
b $\quad f(x)=4-x^{2}$

3 What is the condition for the quadratic function $f(x)=a x^{2}+b x+c$ to have a maximum value? When will it have a minimum value?

4 What is the value of x at which the quadratic function $f(x)=a x^{2}+b x+c$ attains its maximum or minimum value?

The graph of a quadratic function has both its ends going upward or downward depending on whether a is positive or negative. From different graphs you can observe that the graph of a quadratic function

$$
f(x)=a x^{2}+b x+c
$$

i crosses the x-axis twice, if $b^{2}-4 a c>0$.
ii touches the x-axis at a point, if $b^{2}-4 a c=0$.
iii does not touch the x-axis at all, if $b^{2}-4 a c<0$.
To solve a quadratic inequality graphically, find the values of x for which the part of the graph of the corresponding quadratic function is above the x-axis, below the x-axis or on the x-axis. Consider the following examples.
Example 5 Solve the quadratic inequality $x^{2}-3 x+2<0$, graphically.
Solution: Begin by drawing the graph of $f(x)=x^{2}-3 x+2$. Some values for x and $f(x)$ are given in the table below and the corresponding graph is given in Figure 3.28. Complete the table first.

x	-3	-2	-1	0	1	2	3
$f(x)$		12		2		0	

Figure 3.28 Graph of $f(x)=x^{2}-3 x+2$
From the graph, $f(x)=0$ when $x=1$ and when $x=2$. On the other hand, $f(x)>0$ when $x<1$ and when $x>2$ and $f(x)<0$ when x lies between 1 and 2 .

This inequality could be tested by setting $x=\frac{3}{2}$, giving $f\left(\frac{3}{2}\right)=-\frac{1}{4}$. So $f\left(\frac{3}{2}\right)<0$. It follows that the solution set of $x^{2}-3 x+2<0$ consists of all real numbers greater than 1 and less than 2. That is, $S . S=\{x: 1<x<2\}=(1,2)$.

Example 6 Solve the inequality $x^{2}+4 x+5>0$, graphically.
Solution: Make a table of values and complete the table for some selected values of x and $f(x)$ as in the table below and sketch the corresponding graph.

Figure 3.29 Graph of $f(x)=x^{2}+4 x+5$

As shown in the Figure 3.29 above, the graph of $f(x)=x^{2}+4 x+5$ does not cross the x-axis but lies above the x-axis. Thus, the solution set of this inequality consists of all real numbers. So, S.S $=(-\infty, \infty)$.

Note that, if you use the process of completing the square, you obtain

$$
\begin{aligned}
& x^{2}+4 x+5>0 \Rightarrow x^{2}+4 x>-5 \\
& x^{2}+4 x+4>-5+4 \\
& (x+2)^{2}>-1
\end{aligned}
$$

Since the square of any real numbers is non-negative, $(x+2)^{2}>-1$ is true for all real numbers x.

Based on the above information, could you show that the solution set of the inequality $x^{2}+4 x+5<0$ is the empty set? Why?
Example 7 Solve the inequality $-x^{2}+2 x+3<0$, graphically.
Solution: Make a table of selected values for x and $f(x)$. The graph passes through $(0,3)$ and $(-1,0)$ as shown in Figure 3.30.

Figure 3.30 Graph of f $f(x)=-x^{2}+2 x+3$
The graph of $f(x)=2 x-x^{2}+3$ crosses the x-axis at $x=-1$ and $x=3$. So, the solution set of this inequality is

$$
\mathrm{S} . \mathrm{S}=\{x \mid x<-1 \text { or } x>3\} .
$$

If the quadratic equation $a x^{2}+b x+c=0, a \neq 0$ has discriminant $b^{2}-4 a c<0$, then the equation has no real roots. Moreover,
i the solution set of $a x^{2}+b x+c \geq 0$ is the set of all real numbers if $a>0$ and is empty set if $a<0$.
ii the solution set of $a x^{2}+b x+c \leq 0$ is the set of all real numbers if $a<0$ and is empty set if $a>0$.

Exercise 3.5

1 Solve each of the following quadratic inequalities, graphically:
a $x^{2}+6 x+5 \geq 0$
b $\quad x^{2}+6 x+5<0$
c $\quad x^{2}+8 x+16<0$
d $x^{2}+2 x+3 \geq 0$
e $\quad 3 x-x^{2}+2<0$
f $\quad 4 x^{2}-x \leq 3 x^{2}+2$
g $\quad x(x-2)<0$
h $\quad(x+1)(x-2)>0$
i $\quad 3 x^{2}+4 x+1>0$
j $x^{2}+3 x+3<0$
k $\quad 3 x^{2}+22 x+35 \geq 0$
| $6 x^{2}+1 \geq 5 x$.

2 Suppose the solution set of $2 x^{2}+k x+1>0$ consists of the set of all real numbers. Find all possible values of k.
[2 Key Terms

absolute value	linear inequality	quadratic equation
closed intervals	open downward	quadratic function
complete listing	open intervals	quadratic inequality
discriminant	open upward	sign chart
infinity	partial listing	solution set
linear equation	product property	

Summary

1 The open interval (a, b) with end-points a and b is the set of all real numbers x such that $a<x<b$.

2 The closed interval [a,b] with end-points a and b is the set of all real numbers x such that $a \leq x \leq b$.

3 The half-open interval or half-closed interval $[a, b)$ with end points a and b is the set of all real numbers x such that $a \leq x<b$.

4 If x is a real number, then $|x|$ is the absolute value of x defined by

$$
|x|=\left\{\begin{aligned}
& x, \text { if } x \geq 0 \\
&-x, \text { if } \\
& x<0
\end{aligned}\right.
$$

5 For any positive real number a, the solution set of:
i the equation $|x|=a$ is $x=a$ or $x=-a$;
ii the inequality $|x|<a$ is $-a<x<a$ and
iii the inequality $|x|>a$ is $x<-a$ or $x>a$.
6 When two or more linear equations involve the same variables, they are called a system of linear equations.

7 An inequality that can be reduced to either $a x^{2}+b x+c \leq 0, a x^{2}+b x+c<0$, $a x^{2}+b x+c \geq 0$ or $a x^{2}+b x+c>0$, where a, b and c are constants and $a \neq 0$, is called a quadratic inequality.
8 Given any quadratic equation $a x^{2}+b x+c=0$,
i if $b^{2}-4 a c>0$, it has two distinct real roots.
ii if $b^{2}-4 a c=0$, it has only one real root.
iii if $b^{2}-4 a c<0$, it has no real root.
9 When the discriminant $b^{2}-4 a c<0$, then
i the solution set of $a x^{2}+b x+c>0$ is the set of all real numbers, if $a>0$ and empty set if $a<0$.
ii the solution set of $a x^{2}+b x+c<0$ is the set of all real numbers, if $a<0$ and empty set if $a>0$.

10 Product property:
i $\quad m n>0$, if and only if $m>0$ and $n>0$ or $m<0$ and $n<0$.
ii $\quad m n<0$, if and only if $m>0$ and $n<0$ or $m<0$ and $n>0$.

$?$ Review Exercises on Unit 3

1 Solve each of the following inequalities using product properties:
a $(x+1)(x-3)<0$
b $\quad\left(\frac{2}{3} x+3\right)(x-1)<0$
c $\quad(x-\sqrt{3})(x+\sqrt{2})>0$
d $\quad x^{2}>x$
e $\quad x^{2}+5 x+4 \geq 0$
f $(x-2)^{2} \leq 2-x$
g $\quad 1-2 x \geq(1+x)^{2}$
h $\quad 3 x^{2}-6 x+5<x^{2}-2 x+3$.

2 Solve each of the following inequalities using sign charts:
a $(1-x)(5-x)>0$
b $\quad x^{2} \leq 9$
c $\quad(x+2)^{2}<25$
d $1-x \geq 2 x^{2}$
e $\quad 6 t^{2}+1<5 t$
f $\quad 2 t^{2}+3 t \leq 5$.

3 Solve each of the following inequalities graphically:
a $\quad x^{2}-x+1>0$
b $\quad x^{2}>x+6$
C $x^{2}-4 x-1>0$
d $x^{2}+25 \geq 10 x$
e $\quad x^{2}+32 \geq 12 x+6$
f $\quad x(6 x-13)>-6$
g $\quad x(10-3 x)<8$
h $\quad(x-3)^{2} \leq 1$

4 Solve each of the following quadratic inequalities using any convenient method:
a $\quad 2 x^{2}<x+2$
b $\quad-2 x^{2}+6 x+15 \leq 0$
c $\quad \frac{1}{2} x^{2}+\frac{25}{2} \geq 5 x$
d $\quad 6 x^{2}-x+3<5 x^{2}+5 x-5$
e $\quad x(10 x+19) \leq 15$
f $\quad(x+2)^{2}>(3 x+1)^{2}$.

5 What must the value(s) of k be so that:
a $\quad k x^{2}-10 x-5 \leq 0$ for all x ?
b $\quad 2 x^{2}+(k-3) x+k-5=0$ has one real root? two real roots? no real root?
6 The sum of a non-negative number and its square is less than 12. What could the number be?

7 The sum of a number x and twice another is 20. If the product of these numbers is not more than 48 , what are all possible values of x ?

8 The profit of a certain company is given by $p(x)=10,000+350 x-\frac{1}{2} x^{2}$
where x is the amount (Birr in tens) spent on advertising. What amount gives a profit of more than Birr 40,000?

